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Abstract

This paper investigates the performance of tensor methods for solving small-
and large-scale systems of nonlinear equations where the Jacobian matrix at
the root is ill-conditioned or singular. This condition occurs on many classes
of problems, such as identifying or approaching turning points in path fol-
lowing problems. The singular case has been studied more than the highly
ill-conditioned case, for both Newton and tensor methods. It is known that
Newton-based methods do not work well with singular problems because they
converge linearly to the solution and, in some cases, with poor accuracy. On
the other hand, direct tensor methods have performed well on singular prob-
lems and have superlinear convergence on such problems under certain condi-
tions. This behavior originates from the use of a special, restricted form of the
second-order term included in the local tensor model that provides information
lacking in a (nearly) singular Jacobian. With several implementations avail-
able for large-scale problems, tensor methods now are capable of solving larger
problems. We compare the performance of tensor methods and Newton-based
methods for both small- and large-scale problems over a range of conditionings,
from well-conditioned to ill-conditioned to singular. Previous studies with ten-
sor methods only concerned the ends of this spectrum. Our results show that
tensor methods are increasingly superior to Newton-based methods as the prob-
lem grows more ill-conditioned.
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On the Performance of Tensor
Methods for Solving

Ill-conditioned Problems

1 Introduction

This paper examines two classes of methods for solving the nonlinear equations prob-
lem

given F : Rn → Rn, find x∗ ∈ Rn such that F (x∗) = 0, (1)

where it is assumed that F (x) is at least once continuously differentiable. General sys-
tems of nonlinear equations defined by (1) arise in many practical situations, includ-
ing systems produced by finite-difference or finite-element discretizations of boundary
value problems for ordinary and partial differential equations.

As a subset of the general nonlinear equations problem (1), there is a class of
important problems where F ′(x∗) is singular or, at least, very ill-conditioned. Such
examples arise in bifurcation tracking and path following problems where the goal is
to locate turning points, such as the ignition and extinction points in chemical com-
bustion. Resolving these features is important to engineers, who, for instance, may
be designing control systems for such applications and may need to know important
operating boundaries.

Standard methods for solving (1), such as Newton’s method, base each iteration
upon a local, linear model M(xk + d) of the function F (x) around the current iter-
ate xk ∈ Rn. Standard methods work well for problems where the Jacobian at the
solution, F ′(x∗), is well-conditioned; but they face difficulties when the Jacobian is
singular, or even nearly singular, at the solution. Many authors have analyzed the
behavior of Newton’s method on singular problems and have proposed acceleration
techniques as remedies (see, e.g., Decker, Keller, and Kelley [8]; Decker and Kelley
[9, 10, 11]; Griewank [17]; Griewank and Osborne [18]; Kelley and Suresh [20]; and
Reddien [24]). Their collective analysis shows that, from many starting points, New-
ton’s method is locally q-linearly convergent with constant converging to 1

2
on singular

problems where the second-order term F ′′(xk) contains appropriate null space infor-
mation. Acceleration techniques can improve this behavior; however, they require
a priori knowledge that the problem is singular, which is not practical for general
problem solving.

Tensor methods, however, do not require a priori knowledge of whether the prob-
lem is singular or not. These methods were introduced by Schnabel and Frank in
[26] and base each iteration on a simplified quadratic model of F (x) such that the
quadratic term is a low-rank secant approximation that augments the standard linear
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model. Tensor methods also have been extended by other authors to utilize iterative
solvers, making the methods appropriate for solving large-scale problems (see [1, 2],
[3], and [15]).

The analysis in [14] proves that direct tensor methods have quadratic convergence
on nonsingular problems and a faster convergence rate on problems where the Jaco-
bian matrix at the solution is singular. Specifically, when the rank of the Jacobian at
the root is n− 1, “practical” tensor methods (i.e., those using secant approximations
for the tensor term) have three-step superlinear convergence behavior with q-order
3
2
. In practice, one-step superlinear convergence frequently is observed on these prob-

lems, which makes the method even more attractive. The second-order term provides
higher order information in recent step directions, which aids in cases where the Ja-
cobian is (nearly) singular at the solution. As the iterates approach the solution, the
Jacobian lacks information in the null space direction, and the second-order term sup-
plies useful information for a better quality step. Computational evidence in [26] on
small problems shows that tensor methods have about 20% average improvement over
standard methods on nonsingular problems and about 40% improvement on singular
problems with rank(F ′(x∗)) = n− 1.

While tensor methods have encouraging theoretical and computational results on
singular problems, less is known about their performance relative to Newton’s method
on ill-conditioned problems. Do tensor methods outperform Newton’s method due to
the close relationship of ill-conditioned matrices with singular matrices? Or do tensor
methods only exhibit superior behavior when the problem is truly singular? Does the
computational performance of Newton’s method degrade gradually as the problem
becomes more singular, or sharply at the singularity? The performance comparison
over a spectrum of ill-conditioned problems was previously unknown. Thus, this paper
examines the performance of tensor methods versus standard methods as the problem
becomes more ill-conditioned. We consider tensor methods using direct factorizations
of the Jacobian matrix for small-scale problems in addition to Krylov-based iterative
tensor methods for large-scale problems.

The organization of this paper is as follows. Because this research involves meth-
ods for solving small- to large-scale problems, this paper includes background for both
types in section 2. Specifically, we review direct methods for solving small-scale prob-
lems, and we review Krylov-based iterative methods for solving large-scale problems,
including the relevant algorithms from [1, 2] and [15]. Section 3 presents numeri-
cal results on several small- and large-scale ill-conditioned test problems to examine
the performance of tensor methods on problems over a range of conditionings, from
well-conditioned to singular. Finally, section 4 summarizes the numerical results and
provides some concluding remarks.

Throughout this paper, a subscript k refers to the current iterate of a nonlinear
solver. We denote the Jacobian F ′(x) by J(x) and abbreviate J(xk) as Jk. Similarly,
F (xk) is abbreviated often as Fk. When the context is clear, we may drop the subscript
k while still referring to the “current” values at an iteration.
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2 Algorithms

In this section, we introduce the relevant methods for solving systems of nonlinear
equations. We start with methods that use a direct factorization of the Jacobian
matrix, and then we discuss inexact methods that use Krylov subspace projection
techniques. General references for these topics in nonlinear solvers include [12], [19],
[23], and [25].

2.1 Standard Methods

In this paper, we denote by standard methods the class of methods for solving (1)
that uses a linear approximation to F (x) at each iterate around the current iterate
xk ∈ Rn. Most notable among these methods is Newton’s method, which uses the
linear local model

MN(xk + d) = Fk + Jkd, (2)

where d ∈ Rn is the step and Jk ∈ Rn×n is either the current Jacobian matrix or an
approximation to it. A root of this local model provides the Newton step

dN = −J−1
k Fk,

which is used to reach the next trial point. Thus, Newton’s method is defined when
Jk is nonsingular and consists of updating the current point with the Newton step,

x+ = xk + dN . (3)

If the Jacobian J(xk) is Lipschitz continuous in a neighborhood containing the root
x∗ and J(x∗) is nonsingular, then the sequence of iterates produced by (3) converges
locally and q-quadratically to x∗. That is, there exists constants δ > 0 and c ≥ 0
such that the sequence of iterates xk produced by Newton’s method obeys

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖2

if ‖x0 − x∗‖ ≤ δ.

When these standard approaches use direct factorizations of the Jacobian matrix,
we will refer to these methods as direct methods. Due to the storage and linear
algebra costs, direct methods are only practical for solving small, dense problems.

2.2 Tensor methods

Tensor methods [26] solve (1) by including a second-order term in the local model at
each iteration. The local tensor model has the general form

MT (xk + d) = Fk + Jkd + 1
2
Tkdd, (4)
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where Tk ∈ Rn×n×n is the tensor term at xk and is selected so that the model in-
terpolates a small number p of function values in the recent history of iterates. By
choosing the smallest Tk in the Frobenius norm, Tk has rank p and Tkdd is both sim-
ple in form and inexpensive to find. Because (4) may not have a root, one solves the
minimization subproblem

min
d∈Rn

‖MT (xk + d)‖2 , (5)

and a root or minimizer of the model is the tensor step.

The additional cost of forming, storing, or solving the model is minor compared
to Newton’s method. Specifically, the additional cost is about n2p multiplications
(QR implementation) and 2p vectors of length n in storage. For our numerical ex-
periments, we will only consider the simplest case of p = 1. Computational evidence
in [26] suggests that additional past iterates add little benefit to the computational
performance of the tensor method.

Tensor methods are considerably more efficient and robust than standard methods
on singular problems and, to a lesser extent, on nonsingular problems. The second-
order term provides higher order information in recent step directions, which aids in
cases where the Jacobian is (nearly) singular at the solution. As the iterates approach
the solution, the Jacobian lacks information in these directions, and the second-order
term supplies useful information for a better step.

The analysis in [14] confirms that tensor methods have at least quadratic con-
vergence on nonsingular problems. In addition, [14] also shows that tensor meth-
ods have local superlinear convergence for a large class of singular problems with
rank(F ′(x∗)) = n − 1 under mild conditions. In contrast, Newton’s method without
any acceleration techniques on such problems exhibits only q-linear convergence with
constant converging to 1

2
.

Computational evidence in [26] on small problems shows that tensor methods hold
21–23% average improvement over standard methods on nonsingular problems and
40–43% improvement on problems with rank(F ′(x∗)) = n− 1. Thus, tensor methods
outperform standard methods on many problems, especially on singular problems.

2.3 Newton-Krylov methods

Up to this point, we have discussed direct methods for the solution of small, dense
problems, such that the local model is solved with direct factorizations of the Jacobian
matrix. Standard direct methods, such as Newton’s method, are impractical on
large-scale problems because of their high linear algebra costs and large memory
requirements. Thus, most large systems often are solved successfully using a class of
“inexact” Newton methods:

xk+1 = xk + dk, where F ′(xk)dk = −F (xk) + rk, ‖rk‖ ≤ ηk ‖F (xk)‖ , (6)
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such that the local model typically is solved only approximately at each step using
a less expensive approach. These “inexact” steps then locate the next trial point.
Successively better approximations to the linear model at each iteration preserve the
rapid convergence behavior of Newton’s method when nearing the solution. The com-
putational savings reflected in this less expensive inner iteration is usually partially
offset with more outer iterations, but the overall savings still is quite significant on
large-scale problems by avoiding the direct methods that solve the local model exactly.

The most common methods for approximately solving the local Newton model are
Krylov-based methods, which iteratively solve the linear system projected onto the
Krylov subspace K. A linear Krylov subspace method is a projection method that
seeks an approximate solution xm to the linear system Ax = b from an m-dimensional
affine subspace x0 +Km. Here Km is the subspace

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0},

where r0 = b−Ax0 is the residual at an initial guess x0. A popular Krylov subspace
method is the Generalized Minimum Residual method (GMRES), which computes
a solution xm ∈ x0 + Km such that the residual norm over all vectors in x0 + Km

is minimized. That is, at the mth step, GMRES finds xm such that ‖b− Axm‖2 is
minimized for all xm ∈ x0 +Km.

Newton-GMRES is one specific method in the class of Newton-Krylov methods.
Here, the linear system is the Newton equation Jkd = −Fk, and the system is solved
via GMRES according to the tolerance η in (6). Krylov subspace methods have the
appeal of requiring almost no matrix storage due to their exclusive use of Jacobian-
vector products, which may be calculated by a finite-difference directional derivative.
For this reason and others, Newton-GMRES is a popular algorithm for solving large-
scale problems, and it will be the standard large-scale Newton-based algorithm for
comparisons in our numerical experiments.

Newton-Krylov methods have been considered by many authors, including Brown
and Saad [5, 6], Chan and Jackson [7], and Brown and Hindmarsh [4]. Their com-
putational results show that Newton-Krylov methods can be quite effective for many
classes of problems in the context of systems of partial differential equations and
ordinary differential equations.

2.4 Tensor-Krylov methods

Direct methods cannot efficiently solve large-scale problems due to large storage con-
siderations and the expensive direct solution of the local model. To this end, the
three tensor-Krylov methods described in [1, 2] combine the concepts from direct ten-
sor methods with concepts from inexact Newton methods using Krylov-based linear
solvers. The tensor-Krylov methods calculate an inexact tensor step from a specially
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chosen Krylov subspace that facilitates the solution of a minimization subproblem at
each step. Here we just give a very brief overview of these methods.

All large-scale tensor methods in this paper only consider a rank-one tensor model,
which only interpolates the function value at the previous iterate. Thus the rank-p
model of (4) reduces to

MT (xk + d) = Fk + Jkd + 1
2
ak(s

T
k d)2, (7)

such that

ak ∈ Rn =
2(Fk−1 − Fk − Jksk)

(sT
k sk)2

(8)

sk ∈ Rn = xk−1 − xk. (9)

In each of the tensor-Krylov methods, the tensor step is found by approximately
solving the minimization subproblem

min
d∈Km

∥∥Fk + Jkd + 1
2
ak(s

T
k d)2

∥∥
2

(10)

where Km is a specially chosen Krylov subspace that facilitates the solution of the
quadratic model. The three methods described in [1, 2] differ in their choice of
Km, and they are identified by this characteristic difference. TK2 and TK2+ use a
Krylov-based local solver that starts with an initial block of two vectors (TK2+ also
augments the Krylov subspace in a special way). Similarly, TK3 uses an initial block
of size three. The three methods share the ability to calculate an approximate tensor
step that satisfies the tensor model to within a specified tolerance. Their cost per
nonlinear iteration exceeds that of Newton-GMRES by at most 10n + 4mn + 6m2

multiplications (cf. GMRES costs O(nm2) multiplications). The methods can be
readily combined with either left or right preconditioning. More details of these
Krylov-subspace methods for solving the tensor model may be found in [1] and [2].

2.5 Tensor-GMRES method

Another large-scale tensor method is that of Feng and Pulliam [15], which uses Krylov
subspace projection techniques for solving the local tensor model. In particular, it
uses GMRES to first find the approximate Newton step dN = d0 + Vmym. The
columns of Vm form an orthonormal basis for the Krylov subspace Km generated by
the corresponding Arnoldi process, and the Hessenberg matrix Hm is also generated
from the Arnoldi process. Given these key matrices, their tensor-GMRES algorithm
proceeds to solve a projected version of the tensor model (7) along a subspace that
spans the Newton step direction and the Krylov subspace from the Newton step
solution. (That is, the approximate tensor step is in the span of the Krylov subspace
KN

m and d0, or equivalently the span of the matrix [Vm, d0]). Thus, their algorithm
solves the least-squares problem

min
d∈{d0}∪KN

m

∥∥Fk + Jkd + 1
2
Pa(sT d)2

∥∥ , (11)
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where P is the projection matrix

P = Y (Y T Y )−1Y T , where Y = Jk[Vm, d0]. (12)

The analysis in [15] shows that the same superlinear convergence properties for the
unprojected tensor model considered in [14] also hold for the projected tensor model
(11). The complete tensor-GMRES algorithm for solving (11) at the kth nonlinear
iteration is listed in [15].

Despite the algorithm’s difficult algebra, the design actually is rather straight-
forward. The algorithm may be viewed as an extension of Newton-GMRES, where
the inexact Newton step is calculated via GMRES in the standard way. The tensor
step is calculated subsequently using the Krylov subspace information generated for
the Newton step. In this way, the method also is consistent with preconditioning
techniques and a matrix-free implementation, which makes it appealing for general
use.

The extra work and storage beyond GMRES for computing the tensor step is
quite small. The extra work is at most 4mn + 5n + 2m2 +O(m) multiplications plus
a single Jacobian-vector product for evaluating the tensor term ak. The extra storage
amounts to two extra n-vectors for a and s plus a few smaller working vectors of
length m.

The results in [15] show the superlinear convergence behavior of tensor-GMRES
on three singular and nearly singular problems, where the Newton-GMRES method
exhibits linear convergence due to a lack of sufficient first-order information. The
margin of improvement (in terms of reduction of nonlinear iterations over Newton’s
method) varied from 20% to 55% on the simpler problems and 32% to 60% improve-
ment on the more difficult Euler problem. Running times and the total number of
Jacobian-vector products for each method were not reported in [15], but from our
own experience with the algorithm, we assume that these performance metrics are
correlated with the number of nonlinear iterations.

3 Numerical experiments on ill-conditioned prob-

lems

3.1 Small problems solved with direct methods

This section investigates the performance of direct tensor methods as well as Newton’s
method on a set of small problems that include a parameter for adjusting the ill-
conditioning of the Jacobian matrix at the root. The results show that Newton’s
method requires increasingly more iterations as the problem ill-conditioning grows,
whereas the direct tensor methods are only mildly affected.
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Following the approach in [26], we created ill-conditioned problems by modifying
nonsingular test problems to be of the form

F̂ (x, λ) = F (x)− λF ′(x∗)A(AT A)−1AT (x− x∗), (13)

where F (x) is the standard nonsingular test function, x∗ is its root, A ∈ Rn×j is
an arbitrary matrix that has full column rank with 1 ≤ j ≤ n, and λ ∈ [0, 1] is
a parameter for ill-conditioning. We denote by Ĵ(x, λ) as the Jacobian matrix of
F̂ (x, λ) with respect to x:

Ĵ(x, λ) ≡ ∂

∂x
F̂ (x, λ).

These new test problems are similar to problems in continuation or homotopy
methods, except that F̂ (x, λ) has the same root as F (x) (i.e., x∗) for all values of
λ. While the problem becomes harder to solve as λ approaches 1, the idea is not to
follow the path over a sequence of values of λ. Rather, we solve the modified problem
for each value of λ from the same starting point across all tests and record the number
of iterations required to reach the solution.

One special quality of this modified problem is that if λ = 1 and F ′(x∗) has full
rank, then the rank of Ĵ(x∗, λ) equals rank(F ′(x∗))− rank(A) = n− rank(A). Thus,
as λ approaches 1, the rank deficiency of Ĵ(x∗, λ) approaches the rank of A. Stated
another way, a set of the smallest singular values of Ĵ(x∗, λ) equal to the rank of A
will approach 0 as λ approaches 1.

Different sets of singular and ill-conditioned problems may be created using the
matrix A in (13); adding more independent columns to A serves to decrease the rank
of Ĵ(x∗, 1). We routinely used the matrices

A ∈ Rn×1, AT =
(

1 1 1 . . . 1
)
,

A ∈ Rn×2, AT =

(
1 1 1 . . . 1
1 −1 1 . . . ±1

)
,

and

A ∈ Rn×3, AT =

 1 1 1 . . . 1
1 −1 1 . . . ±1
1 1 −1 . . . ±1,


because they provide “balanced” problems by acting equally on the whole Jacobian
F ′(x∗). Letting A equal the unit vector e1, for example, would only operate on the
(1, 1) element of F ′(x).

We chose six problems for testing from the standard small dimensional test set of
Moré, Garbow, and Hillstrom [22] and modified them according to (13). Table 1 lists
the problems used in our numerical tests, along with the corresponding dimensions.
For all problems, the starting vector x0 was the standard starting point for each
problem published in [22]. Except for the cases mentioned below, these starting
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Table 1. Ill-conditioned test problems.

Problem Size
Broyden Tridiagonal 50
Broyden Banded 50
Discrete Integral Equation 50
Discrete Boundary Value Function 50
Rosenbrock’s Function 2
Brown Almost Linear 10

points did not require a global strategy to reach the solution (i.e., the full step was
accepted at all iterations).

We chose the parameter λ in (13) to asymptotically approach λ = 1 by using the
values λ = 1 − 10−j, j = 0, 1, 2, . . . . Thus, for j = 0 the problem is the original,
unmodified problem, and each subsequent value of j makes the problem more ill-
conditioned. At some point, round-off errors in the evaluation of F̂ (x, λ) as well as
the numerical precision of the root x∗ make the numerical solution indistinguishable
from the case of λ = 1. All subsequent values of λ would produce the same result,
so we collected only the results up to these points and indicated the case of λ = 1 at
the rightmost extent of our plots.

We used the following two stopping conditions in all these tests: ‖F (xk)‖∞ ≤
10−12 or ‖xk − xk−1‖∞ ≤ 10−12, which are the same conditions Eisenstat and Walker
used when analyzing inexact Newton methods in [13]. In many practical applications,
less stringent convergence tolerances are commonly used, but these tight tolerances
were used in this experiment (and later experiments) to differentiate results at higher
condition numbers and to allow asymptotic convergence behavior to become evident.
The numerical differences are still present but less striking at looser stopping toler-
ances.

As a prelude to these results and to help explain what is happening in these
experiments, we first provide a graphical description. Figure 1 shows the typical
iteration profiles for different values of λ that we observed. This figure graphs the
function value at each iteration for the tensor and Newton methods on a typical
problem approaching rank n − 1 with various values of λ = 0, 0.9, 0.99, 0.999, . . . , 1.
All of the tensor method profiles are bunched together on the left, requiring few
iterations even as λ nears 1, whereas the profiles of Newton’s method are spread out
and require increasingly more iterations for convergence as the problem becomes more
ill-conditioned. This plot of iteration profiles is typical for all problems. Thus, while
all of the tensor runs display superlinear convergence throughout the iterations, it is
evident that Newton’s method converges linearly for a number of iterations before
accelerating to quadratic convergence. With increasing ill-conditioning, the region of
quadratic convergence for Newton’s method shrinks in size, acting as if the problem
were singular outside of this region.
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Figure 1. Superimposed iteration profiles of the tensor
method (O, solid lines) and Newton’s method (◦, dashed
lines) when solving the Modified Broyden Tridiagonal func-
tion as it approaches rank n−1. For both methods and their
corresponding set of iteration profiles, problem difficulty (λ)
increases from left to right, making the problem more ill-
conditioned and requiring more iterations to solve.

Figure 2 shows the relative performance of Newton’s method versus a rank-one
tensor method on the six problems, in the case where each Jacobian at the solution
approaches rank n−1. The condition number Ĵ(x∗, λ) is plotted on the abscissa, while
the number of iterations for both methods is plotted on the ordinate axis. One tensor
method iteration is just slightly more expensive than a Newton iteration. There were
no linesearches in all cases except on Rosenbrock’s function at λ = 0, which explains
the unusual spike on the left in that plot. Also, both methods arrived at different
solutions in the Brown Almost Linear problem at λ = 0, so these points were not
included in that plot. For all other points, both methods arrived at the same x∗.

The six plots of Figure 2 show that as the ill-conditioning of a particular problem
grows, Newton’s method requires more iterations whereas the tensor method is very
mildly affected. This is a key result. Previously, tensor methods were suggested
to behave reasonably well on ill-conditioned problems, but there was no numerical
testing of this conjecture.

However, because the condition number is just a single value representing the ra-
tio of the largest to the smallest magnitude singular values, it does not capture the
singular value spectrum of the Jacobian. Say, for instance, that there are multiple
singular values approaching zero, creating a very ill-conditioned matrix. One might
speculate that a tensor method using a rank-one tensor term would be less advanta-
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Figure 2. Comparison of a rank-one tensor method (O,
solid line) with Newton’s method (◦, dashed line) on variably
ill-conditioned test problems that approach rank n− 1.

geous in this case because it could “handle” only one direction, perhaps the direction
associated with the smallest singular value, leaving other (near) singular directions to
impede convergence. Figures 3 and 4 consider exactly these cases where the Jacobians
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approach rank n−2 and n−3, respectively, while still using a rank-one tensor model.
Two problems were not included in these figures for different reasons. The Modified
Rosenbrock Function had excessive linesearches that obscured the results in the rank
n − 2 problems, and the rank n − 3 problem is not possible with the Rosenbrock
Function due to its small dimension of n = 2. For the Brown Almost Linear problem,
each method arrived at a solution that was different from the root x∗ used in (13).
For these reasons, these two problems were not included in Figures 3 and 4.

It is evident that the results for higher rank deficiencies are not as striking as in
Figure 2, but the general trend still remains—tensor methods perform better than
Newton’s method on ill-conditioned problems, even when the Jacobian approaches a
rank deficiency greater than the rank of the tensor term. A few peculiarities exist in
the results that warrant explanation. We attribute the “humps” in both curves to
the random paths each method takes to arrive at the solution, and we believe this
shape is coincidental. The “spikes” in both methods for the two Discrete problems in
Figure 4 are due to linesearches occurring at a specific value of λ. The linesearches
force a few more outer iterations to eventually solve the problems.

3.2 Moderate-size problems solved with inexact methods

This subsection investigates the performance of Newton-GMRES, tensor-GMRES,
and the tensor-Krylov methods on three ill-conditioned problems of moderate size
and complexity: the Bratu problem, a modified discrete boundary value function,
and a modified Broyden tridiagonal problem. The tests on the ill-conditioned prob-
lems have a similar design as the study performed in section 3.1, and we investi-
gate to what extent the benefits of using direct tensor methods for solving small
ill-conditioned/singular problems that were shown section 3.1 extend to large-scale,
inexact versions of tensor methods.

We implemented all of the methods in MATLAB using double precision arithmetic.
For objective comparisons, we used the same level of basic linear algebra routines in
MATLAB in all of our tests. Thus, the results in this section do not reflect the
most efficient implementations that are available, but the statistics that we collected
(nonlinear iterations, function evaluations) are invariant to optimal implementations.

For the numerical tests, we used the same stopping conditions and parameters as
in section 3.1. For the inner method, we solved the local model to a constant relative
tolerance of 10−4, which requires uniformly close approximations to Newton and/or
tensor steps at each iterate and results in fast local q-linear convergence. Using a
constant relative tolerance may not be ideal in practice (see [13] for alternatives), but
it provides for more unbiased comparisons among the methods.

In practice, the Krylov subspace dimension should be kept small to reduce arith-
metic and storage costs, which may be accomplished via restarted Krylov methods
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Figure 3. Comparison of a rank-one tensor method (O,
solid line) with Newton’s method (◦, dashed line) on variably
ill-conditioned test problems that approach rank n− 2.

and preconditioning. However, to eliminate any ill effects of small Krylov subspaces
preventing convergence in the local model and affecting the outer iterations, the max-
imum Krylov subspace was set to the problem dimension, mmax = n, and the solver
was not restarted. We used preconditioners that are appropriate for the problem, and
they will be discussed with each problem.

In the next three subsections, we present numerical results on the ill-conditioned
problems. The results of the tensor-Krylov method TK2 are virtually identical to
TK2+, so we do not include them here.

3.2.1 Bratu problem

The Bratu problem is a simplified model for nonlinear diffusion phenomena occurring,
for example, in semiconductors and combustion, where the source term is related to
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Figure 4. Comparison of a rank-one tensor method (O,
solid line) with Newton’s method (◦, dashed line) on variably
ill-conditioned test problems that approach rank n− 3.

the Arrhenius law for modeling exothermic reactions. The following version is taken
from the set of nonlinear model problems collected by Moré [21]. The problem is the
nonlinear partial differential equation in u

−∇2u = λeu in Ω, u = 0 on ∂Ω, (14)

where ∇2 =
∑n

i=1 ∂2/∂x2
i is the Laplace operator, λ ∈ R is a parameter, Ω is the

bounded domain (0, 1)× (0, 1), and ∂Ω the boundary of Ω.

Problem (14) has a unique solution for λ ≤ 0, but for λ > 0, there may be zero,
one, or two solutions (cf., [16]). The critical value λ∗ = 6.80812 is a limit point such
that for 0 < λ < λ∗, problem (14) has two solutions; and for λ > λ∗, it has no
solutions. Also, the problem at the limit point is singular with a rank of n − 1, and
as λ approaches the limit point, the discretized problem becomes harder to solve. To
investigate the effects of ill-conditioning on the inexact algorithms, we increased λ
over the range λ ∈ [5, 6.806652], which increased the condition number of J(x∗) from
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about 103 to 106.

When testing the Bratu problem, the initial approximate solution was zero on a
uniform grid of size 31 × 31. The Laplace operator was discretized using centered
differences (5-point stencil), and our preconditioner was also the centered differences
discretization of the Laplace operator. We computed Jacobian-vector products using
first-order forward differences. Hence, the number of function evaluations is the sum
of the total number of Arnoldi iterations, the number of linesearch backtracks (if
any), and the total number of nonlinear iterations. Thus, the number of function
evaluations provides a relative measure of overall work for each algorithm.

Figure 5 presents the results of these tests, comparing the number of function
evaluations computed for each method using the three choices of preconditioning
(none, left, and right preconditioning). If one considers the condition number of the
preconditioned Jacobian at the root (i.e., M−1J(x∗) or J(x∗)M

−1), then the condition
numbers in the bottom two plots span the range of 3×100 to about 104 instead of 103

to 106 for the Jacobian itself. The results in the figure are similar to those in figures in
section 3, where Newton-GMRES requires increasingly more function evaluations as
the problem becomes more ill-conditioned and difficult. The tensor-Krylov methods
required from 4 to 7 outer iterations, whereas Newton-GMRES required from 4 to
13 outer iterations. That is, Newton-GMRES required almost double the number
of tensor-Krylov iterations on the most ill-conditioned problem. The three plots
in Figure 5 uphold the prior conclusion that increased ill-conditioning only mildly
increases the number of outer iterations for tensor methods.

In all cases, when the problem is not overly difficult (e.g., the experiment at
condition number of 103 on the left-hand side of the figure), Newton-GMRES is more
efficient in terms of nonlinear iterations than the tensor methods. Here, the number
of iterations for all of the methods is equal, but GMRES is more efficient at solving
the local Newton model, which results in fewer total function evaluations. When
the problem is more difficult, however, the tensor methods are superior to Newton-
GMRES by a factor of up to 1.9. Approaching the limit point even closer would have
given even more of an advantage to the tensor-Krylov methods.

When comparing only the tensor methods, the tensor-GMRES method of Feng
and Pulliam is more efficient than the TK3 and TK2+ methods. It appears that
the step produced from the projected tensor model of the Feng-Pulliam method is
nearly the same as the steps calculated from the more precise local models of the
tensor-Krylov methods, and it is less expensive to compute. This behavior may be
understood more clearly by investigating the iteration history of all of the methods,
which we describe next.

To investigate the step quality of each tensor-Krylov method, we tested the Bratu
problem with λ = 6.806652, which has a condition number of roughly 1.5 × 106.
Using right preconditioning, the results in the first plot of Figure 6 show the faster
outer (nonlinear) iterations of the three tensor methods, which display very similar
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Figure 5. Effects of ill-conditioning on the inexact algo-
rithms as seen in the Bratu problem.

performance. All methods start by exhibiting linear convergence until the respective
method can overcome the near singularity and accelerate convergence. The tensor
methods accelerate convergence sooner than Newton-GMRES (iteration 2 versus it-
eration 5), and this is typical behavior for ill-conditioned problems—Newton-type
methods branch into superlinear convergence later and later as the ill-conditioning
grows. Because the forcing term for the inner iterative method is constant (instead
of decreasing each iteration), all methods exhibit asymptotic linear convergence, as
evidenced by their straight trajectories near the solution.

When we consider function evaluations in the bottom plot, the tensor-Krylov
methods separate from the Feng-Pulliam method. The block size of the method is a
clear indicator of the relative efficiency of the method. Specifically, tensor-GMRES,
which uses the scalar (block size one) implementation of GMRES, is more efficient
than TK2+ (block size two) and TK3 (block size three). The Bratu problem is unique
among our tests in that the steps computed from a projected local tensor model are of
roughly the same quality as the steps from TK2+ and TK3. Therefore, the number of
outer iterations are the same, but because tensor-GMRES is more efficient in solving
the local model, tensor-GMRES has the advantage.
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Figure 6. Example iteration history on the Bratu problem
at λ = 6.806652.

3.2.2 Modified discrete boundary value problem

The discrete boundary value problem is a simple test problem from [22]. The standard
discrete boundary value problem is

fi(x) = 2xi − xi−1 − xi+1 + 1
2
h2(xi + ti + 1)3, 1 ≤ i ≤ n, (15)

where h = 1
n+1

, ti = ih, and x0 = xn+1 = 0. The initial approximate solution is
zero on a problem size of n = 100 equations. For our tests, we have modified (15) in
accordance with equation (13) of section 3.1.

When testing this problem, we used a preconditioner that corresponds to the
Jacobian of (15) but without the term ti. We computed Jacobian-vector products
using an analytic evaluation of the Jacobian, and we tallied the number of “function
evaluation equivalents,” which is the sum of function evaluations and Jacobian-vector
products. If these products were approximated by first-order forward differences, as
is generally the case with complex problems, then “function evaluation equivalents”
would be equal to the number of function evaluations. This number also provides a
relative measure of overall work for each algorithm.
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Figure 7 presents the results of these tests, comparing the number of function
evaluation equivalents computed for each method using the three choices of pre-
conditioning (none, left, and right preconditioning) for the various values of λ =
1 − 10−j, j = 0, 1, 2, . . . in equation (13). If one considers the condition number of
the preconditioned Jacobian at the root (i.e., M−1J(x∗) or J(x∗)M

−1), then the con-
dition numbers in the bottom two plots span the range of 1 × 100 to about 2 × 106

(left preconditioning) or 2× 108 (right preconditioning) instead of 4× 103 to 2× 109

for the Jacobian, not counting the singular case.

The results for the modified discrete boundary value problem are similar to those
of the Bratu problem in Figure 5: Newton-GMRES requires increasingly more func-
tion evaluations as the problem becomes more ill-conditioned, whereas the number of
function evaluations required by the tensor methods increases to a lesser extent. It
is interesting to note that the tensor methods are virtually identical in performance
without preconditioning and resemble the results in section 3.1. However, once pre-
conditioning is used, the tensor methods are affected by the ill-conditioning of the
problem, yet still to a lesser extent than Newton-GMRES.
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Figure 7. Effects of ill-conditioning on the inexact algo-
rithms as seen in the discrete boundary value problem.

When comparing only the tensor methods while using left and right precondition-
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ing, the tensor-GMRES method of Feng and Pulliam is more efficient than the TK3
and TK2+ methods on the easier problems but less efficient on the hardest problems,
which is different from the experience with the Bratu problem above. We explain this
relative difference by noting that Tensor-GMRES required more nonlinear iterations
as the problem grew more ill-conditioned. Because the tensor-Krylov methods gen-
erally require more Arnoldi (inner) iterations to solve the local tensor model due to
the less efficient block-Arnoldi process, any computational savings must come from
fewer nonlinear (outer) iterations.

To better illustrate this behavior, Figure 8 presents the iteration history of all
methods for one test case in Figure 7. We present the results of the modified problem
using right preconditioning with λ = 1, which corresponds to the right-most set
of points in the bottom plot of Figure 7. Here, the top plot of Figure 8 shows
that Newton-GMRES has linear convergence, and after one good step on the second
iteration, Tensor-GMRES appears to have linear convergence that is slightly faster
than Newton-GMRES. The TK2+ and TK3 methods appear to have superlinear
convergence with nearly the same steps. This profile indicates that the tensor step
found from a projected tensor model is not as good for this problem as the tensor-
Krylov steps which use the full tensor model. That is, the projection of the tensor
model loses some information that is important for achieving superlinear convergence.

When we consider function evaluations in the bottom plot of Figure 8, two features
are evident. First,the slope of the Newton-GMRES and tensor-GMRES lines are
nearly identical, which indicates that the cost of solving the projected tensor model
in terms of function evaluations is roughly the same as solving the Newton model in
Newton-GMRES. Second, the TK2+ and TK3 trajectories separate, which indicates
that the block-2+ local solver in TK2+ is more efficient than the block-3 solver in
TK3.

3.2.3 Modified Broyden tridiagonal problem

The Broyden tridiagonal problem is another test problem from [22]. The function is
defined as

fi(x) = (3− 2xi)xi − xi−1 − 2xi+1 + 1, 1 ≤ i ≤ n, (16)

where x0 = xn+1 = 0. Here again, we have modified the problem to be ill-conditioned,
but in this case, we modify the last function to be

fn(x) = (1− λ) [(3− 2xn)xn − xn−1 + 1] + λ [(3− 2xn)xn − xn−1 + 1]2 .

This modification is similar to the problem studied by Feng and Pulliam in [15]
and makes the problem more ill-conditioned as λ asymptotically approaches one and
singular at λ = 1 with a rank n− 1. We used the values λ = 1− 10−j, j = 0, 1, 2, . . . ,
until the results were indistinguishable from λ = 1 due to round-off error, at which
point we just use λ = 1. For our tests, we set n = 100 and used (−1, . . . ,−1)T as the
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Figure 8. Example iteration history on the discrete bound-
ary value problem at λ = 1.

starting vector. We used the Jacobian of (16) as our preconditioner for all values of
λ.

Figure 9 presents the results of the ill-conditioning tests over the span of problems
λ ∈ [0, 1], which affects the condition number of J(x∗). The three plots represent the
three choices of preconditioning (none, left, and right preconditioning), and each
compares the number of function evaluation equivalents computed for the different
methods. If one considers the condition number of the preconditioned Jacobian at
the root (i.e., M−1J(x∗) or J(x∗)M

−1), then the condition numbers in the bottom
two plots (not counting the singular case) span the range of 1×100 to 2×106 instead
of 3× 100 to 3× 106 for the Jacobian.

Here again the results show that Newton-GMRES requires increasingly more func-
tion evaluations as the problem becomes more ill-conditioned. The tensor methods
are affected somewhat at the low condition numbers, but there is a plateau where the
number of function evaluations required by the tensor methods are no longer affected
by the ill-conditioning of the problem. Near λ = 1, Newton-GMRES requires almost
twice the number of function evaluations as the tensor methods.
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Figure 9. Effects of ill-conditioning on the inexact algo-
rithms as seen in the modified Broyden Tridiagonal problem.

When comparing only the tensor methods while using left and right precondition-
ing, the tensor-GMRES method of Feng and Pulliam is roughly comparable to TK3.
The TK2+ method is more efficient on all problems except one, where tensor-GMRES
is the best. In comparison with Newton-GMRES on the easier problems with left or
right preconditioning, TK2+ requires the same number or fewer function evaluation
equivalents.

Figure 10 presents the iteration history of all methods for the right-most test case
(λ = 1) in the right preconditioning plot in Figure 9. The top plot of Figure 10 shows
that Newton-GMRES has linear convergence on this singular problem, and the tensor
methods have superlinear convergence. Once again, the two tensor-Krylov methods
have the same quality of steps, but the tensor-GMRES method no longer shares the
same trajectory as TK2+ and TK3, which indicates that the projected tensor model
loses some critical directional information.

The bottom plot of Figure 10 considers the function evaluation equivalents on the
x-axis. It shows that tensor-GMRES is generally more efficient than TK3 at solving
the local model. Thus, while TK3 is more efficient in total nonlinear iterations, tensor-
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Figure 10. Example iteration history on the modified Broy-
den tridiagonal problem at λ = 1.

GMRES is more efficient at solving the local model, which accounts for the difference.
Another feature evident in the bottom plot is that the TK2+ and TK3 trajectories
separate. As with the discrete boundary value problem above, this indicates that the
block-2+ local solver in TK2+ is more efficient than the block-3 solver in TK3.

4 Summary and conclusions

This paper has investigated the performance of small- and large-scale tensor methods
on problems over a range of conditionings, from well-conditioned to ill-conditioned
to singular. Our results showed that tensor methods outperform Newton’s method
as the problems become more ill-conditioned. Prior to this investigation, studies on
direct tensor methods only focused on singular problems or on general problems that
are well-conditioned.

Specifically, our results show that, eventual quadratic convergence notwithstand-
ing, the performance of Newton’s method will degrade as the ill-conditioning grows,
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whereas tensor methods appear to be relatively unaffected or only mildly affected
(in the case of larger rank deficiencies). Newton-based methods do not handle these
singular problems well because they converge linearly to the solution and, in some
cases, with poor accuracy.

For the large-scale methods, despite the use of an iterative inner method with an
approximate solve, the tensor-Krylov methods appear to retain superlinear conver-
gence properties on ill-conditioned problems. On the other hand, Newton-GMRES is
affected by the ill-conditioning and branches into superlinear convergence later and
later as the problems become more ill-conditioned. Thus, tensor methods are espe-
cially useful for large-scale problems that are highly ill-conditioned or singular, where
Newton-based algorithms exhibit very slow convergence.

There are many important and practical problems that have ill-conditioned or
singular Jacobian matrices at the solution, such as large PDE problems that ex-
hibit “turning points” and/or shocks. The conclusions of this research indicate that
concepts from tensor methods may benefit algorithms for bifurcation tracking and
stability analysis. We intend to investigate these applications in future research.

29



References

[1] Brett W. Bader. Tensor-Krylov methods for solving large-scale systems of non-
linear equations. SIAM J. Numer. Anal. submitted.

[2] Brett W. Bader. Tensor-Krylov methods for solving large-scale systems of non-
linear equations. PhD thesis, University of Colorado, Boulder, Department of
Computer Science, 2003.

[3] Ali Bouaricha. Solving large sparse systems of nonlinear equations and nonlinear
least squares problems using tensor methods on sequential and parallel computers.
PhD thesis, University of Colorado, Boulder, Department of Computer Science,
1992.

[4] Peter N. Brown and Alan C. Hindmarsh. Reduced storage methods in stiff ODE
systems. J. Appl. Math. Comput., 31:40–91, 1989.

[5] Peter N. Brown and Yousef Saad. Hybrid Krylov methods for nonlinear systems
of equations. SIAM J. Sci. Statist. Comput., 11:450–481, 1990.

[6] Peter N. Brown and Yousef Saad. Convergence theory of nonlinear Newton-
Krylov algorithms. SIAM J. Optim., 4:297–330, 1994.

[7] T. F. Chan and K. R. Jackson. The use of iterative linear equation solvers in
codes for large systems of stiff IVPs for ODEs. SIAM J. Sci. Statist. Comput.,
7:378–417, 1986.

[8] D. W. Decker, H. B. Keller, and C. T. Kelley. Convergence rate for Newton’s
method at singular points. SIAM J. Numer. Anal., 20:296–314, 1983.

[9] D. W. Decker and C. T. Kelley. Newton’s method at singular points I. SIAM J.
Numer. Anal., 17:66–70, 1980.

[10] D. W. Decker and C. T. Kelley. Newton’s method at singular points II. SIAM
J. Numer. Anal., 17:465–471, 1980.

[11] D. W. Decker and C. T. Kelley. Convergence acceleration for Newton’s method
at singular points. SIAM J. Numer. Anal., 19:219–229, 1982.

[12] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ,
1983.

[13] Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an
inexact Newton method. SIAM J. Sci. Comput., 17:16–32, 1996.

[14] Dan Feng, Paul D. Frank, and Robert B. Schnabel. Local convergence analysis of
tensor methods for nonlinear equations. Math. Programming, 62:427–459, 1993.

30



[15] Dan Feng and Thomas H. Pulliam. Tensor-GMRES method for large systems of
nonlinear equations. SIAM J. Optim., 7:757–779, 1997.

[16] R. Glowinski, H. B. Keller, and L. Reinhart. Continuation-conjugate gradient
methods for the least squares solution of nonlinear boundary value problems.
SIAM J. Sci. Statist. Comput., 6:793–832, 1985.

[17] A. Griewank. On solving nonlinear equations with simple singularities or nearly
singular solutions. SIAM Review, 27:537–563, 1985.

[18] A. Griewank and M. R. Osborne. Analysis of Newton’s method at irregular
singularities. SIAM J. Numer. Anal., 20:747–773, 1983.

[19] C. T. Kelley. Iterative methods for linear and nonlinear equations. Society for
Industrial and Applied Mathematics, Philadelphia, 1995.

[20] C. T. Kelley and R. Suresh. A new acceleration method for Newton’s method
at singular points. SIAM J. Numer. Anal., 20:1001–1009, 1983.
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